Abstract
Alpacas are one of four South American Camelid species living in the highlands of the Andes. Production of alpaca fiber contributes to the economy of the region and the livelihood of many rural families. Fiber quantity and quality are important and in need of a modern breeding program based on genomic selection to accelerate genetic gain. To achieve this is necessary to discover enough molecular markers, single nucleotide polymorphisms (SNPs) in particular, to provide genome coverage and facilitate genome wide association studies to fiber production characteristics. The aim of this study was to discover alpaca SNPs by genotyping forty alpaca DNA samples using the BovineHD Genotyping Beadchip. Data analysis was performed with GenomeStudio (Illumina) software. Because different filters and thresholds are reported in the literature we investigated the effects of no-call threshold (≥0.05, ≥0.15, and ≥0.25) and call frequency (≥0.9 and =1.0) in identifying positive SNPs. Average GC Scores, calculated as the average of the 10% and 50% GenCall scores for each SNP (≥0.70) and the GenTrain score ≥ 0.25 parameters were applied to all comparisons. SNPs with minor allele frequency (MAF) ≥ 0.05 or ≥ 0.01 were retained. Since detection of SNPs is based on the stable binding of oligonucleotide probes to the target DNA immediately adjacent to the variant nucleotide, all positive SNP flanking sequences showing perfect alignments between the bovine and alpaca genomes for the first 21 or 26 nucleotides flanking the variant nucleotide at either side were selected. Only SNPs localized in one scaffold were assumed unique. Unique SNPs identified in both reference genomes were kept and mapped on the Vicugna_pacos 2.0.2 genome. The effects of the no-call threshold ≥ 0.25, call frequency = 1 and average GC ≥ 0.7 were meaningful and identified 6756 SNPs of which 400 were unique and polymorphic (MAF ≥ 0.01). Assignment to alpaca chromosomes was possible for 292 SNPs. Likewise, 209 SNPs were localized in 202 alpaca gene loci and 29 of these share the same loci with the dromedary. Interestingly, 69 of 400 alpaca SNPs have 100% similarity with dromedary.
Highlights
The aim of this study was to evaluate single nucleotide polymorphisms (SNPs) genotyping in alpacas using the BovineHD Genotyping Beadchip (Illumina, United States), in spite of 42.7 million years of evolutionary divergence between these two species (Wu et al, 2014) and to evaluate the different analysis methods reported in the literature
The comparison of different filtering methods indicated that no-call threshold, call frequency and average GC are important parameters to consider for the successful identification of polymorphic SNPs in cross hybridization experiments
The application of these filters allowed the identification of 6756 alpaca SNPs of which 400 are polymorphic and 292 SNPs were assigned to alpaca chromosomes
Summary
The aim of this study was to evaluate SNP genotyping in alpacas using the BovineHD Genotyping Beadchip (Illumina, United States), in spite of 42.7 million years of evolutionary divergence between these two species (Wu et al, 2014) and to evaluate the different analysis methods reported in the literature
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have