Abstract
This paper describes a nanometer-scale bending test for a single crystal silicon (Si) fixed beam using an atomic force microscope (AFM). This research focuses on revealing the size effect on the mechanical property of Si beams ranging from a nano- to millimeter scale. Nanometer-scale Si beams, with widths from 200 to 800 nm and a thickness of 255 nm, were fabricated on an Si diaphragm by means of field-enhanced anodization using AFM and anisotropic wet etching. The efficient condition of the field-enhanced anodization could be obtained by changing the bias voltage and the scanning speed of the cantilever. Bending tests for micro- and millimeter-scale Si beams fabricated by a photolithography technique were also carried out using an ultraprecision hardness tester and scratch tester, respectively. Comparisons of Young's modulus and bending strength, of Si among the nano-, micro-, and millimeter scales showed that the specimen size did not have an influence on the Young's modulus in the [110] direction, whereas it produced a large effect on the bending strength. Observations of the fractured surface and calculations of the clack length from Griffith's theory made it clear that the maximum peak-to-valley distance of specimen surface caused the size effect on the bending strength.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have