Abstract

SiO2 thin films deposited on LiNbO3 and LiTaO3 using RF magnetron sputtering were evaluated using a line-focus-beam ultrasonic material characterization (LFB-UMC) system. From the measured velocity of a leaky surface acoustic wave (LSAW), c11 and c44 for a SiO2 film were determined to be 0.755 × 1011 and 0.289 × 1011 N m−2 assuming that the density and dielectric constant of the thin film were bulk values. The measured LSAW velocities are in good agreement with values calculated using determined values. The acoustical loss was evaluated from the difference between the measured propagation attenuation and the calculated leakage loss into water. However, the differences were 0.02–0.27 dB/λ, which were considered to be too large for the acoustical loss of SiO2 thin films. By accurately measuring the density of a thin film and determining its elastic constant, it is possible that the acoustical loss of a thin film can be evaluated using an LFB-UMC system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.