Abstract

The Cambrian Jiulaodong Formation of the Wei-201 well block in the Sichuan Basin was investigated for shale gas potential. In the subsurface, the thermally mature formation attained a stable thickness of 234 m encompassing an area of approximately [Formula: see text] and representing a potential gas resource. The total gas content measurements from canistered samples was more than the estimated total gas storage capacity of the free gas, absorbed gas, and gas dissolved in water and in oil. The canister gas content ranged between 0.971 and [Formula: see text] and averaged [Formula: see text]. The average estimated gas in place was 2.5 billion cubic meters for the formation in the Weiyuan area. Reflectance measurements for thermal maturity range between 2.60% and 3.06% and average 2.84%. The results of our total organic carbon content (TOC) content analysis conducted on the core shale samples indicate that the TOC content of the formation ranges from 0.87% to 3.57% and averages 2.2%. The mineral composition of marine mudstone formation of the Jiulaodong shale is relatively consistent. Brittle mineral content increases with organic carbon content and is approximately 32%–43%, of which quartz content is 29%–40% with a very low amount of clay mineral as the mixed layer. The amount of illite-smectite ranges from 0% to 1% and the brittleness index range from 37% to 62% and average 57.1%. The Cambrian Jiulaodong Formation ha very good petroleum-source rock potential due to its average TOC content of greater than 2%, average canister gas content of [Formula: see text], good type I kerogen, high maturity with average 2.84% of source rocks that are characterized by a fairly high abundance of organic matter increasing from top to bottom and a large thickness of 234 m. Natural fractures, cracks, and pores developed in the Jiulaodong Formation also provide space for shale gas storage, and its average brittleness index is greater than 57%, which is good for fracability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.