Abstract

The assessment of shale gas potential for the Ordovician Pingliang Formation and Carboniferous–Permian Taiyuan and Shanxi formations in the northwest margin of Ordos Basin, China provides insight into how fluctuation in depositional environments has a significant role on lithofacies and shale gas potential. To investigate the shale gas potential, a series of measurements (i.e. Rock-Eval pyrolysis, maceral composition analyses and X-ray powder diffraction, etc.) on representative outcrop samples were conducted to characterise shale properties. The organic matter from marine Pingliang shale is predominantly type I with a strong predominance of sapropelinite, whereas the transitional Taiyuan-Shanxi shales are dominated by types II to III kerogen. Furthermore, the Pingliang shale is characterised as a ‘poor’ source rock mainly owing to the lower total organic carbon (TOC) content (average 0.79 wt%) and higher maturity [average 1.78% in vitrinite reflectance (R o)], while the transitional Taiyuan-Shanxi shales are mostly characterised as ‘fair’ source rocks, and some samples with high TOC content (more than 2.0 wt%) present good source rocks. It is also found that the sedimentary environment, as a key factor determining the organic matter and TOC content, inevitably influences the type and content of minerals in shale, and controls the shale gas potential. For example, the transitional argillaceous Taiyuan-Shanxi shales are significantly different from the siliceous Pingliang shales, specifically, total clay content for the former is more than 50 wt%, while the latter is rich in quartz content (more than 70 wt%). Additionally, the quartz and clay contents of the Taiyuan shale range widely, especially the smectite content of I–S ML. The barrier coastal facies in the Taiyuan Formation are more conducive to the enrichment and preservation of organic matter because the Shanxi shale was deposited in shallow delta facies with a greater terrestrial influence. Conclusively, the Taiyuan and Shanxi formations have relatively good exploitation potential for shale gas, especially the relatively high TOC content (average 2.45 wt%) and moderate R o value (average 1.25%). For future exploration, selecting areas with relatively large shale thickness, high brittle mineral content, stable tectonics and better preservation conditions are key to optimising favourable exploration areas for shale gas. KEY POINTS The shale gas potentials of the argillaceous Taiyuan-Shanxi shales and siliceous Pingliang shale are compared. The influence of sedimentary facies on reservoir parameters of marine and transitional shales is established. This is a first detailed comparison of the marine and transitional shale gas potential in the northwest margin of Ordos Basin, China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call