Abstract

The merits of several high-resolution, pulsed-power-driven, flash X-ray sources are examined with numerical simulation for voltages up to 10 MV. The charged particle dynamics in these self-magnetically pinched diodes (SMPDs), as well as electron scattering and energy loss in the high-atomic-number target, are treated with the partic by coupling the output from LSP with the two-dimensional component of the integrated tiger series of Monte Carlo electron/photon transport codes, CYLTRAN. The LSP/CYLTRAN model agrees well with angular dose-rate measurements from positive-polarity rod-pinch-diode experiments, where peak voltages ranged from 5.2-6.3 MV. This analysis indicates that, in this voltage range, the dose increases with angle and is a maximum in the direction headed back into the generator. This suggests that high-voltage rod-pinch experiments should be performed in negative polarity to maximize the extracted dose. The benchmarked LSP/CYLTRAN model is then used to examine three attractive negative-polarity diode geometry concepts as possible high-resolution radiography sources for voltages up to 10 MV. For a 2-mm-diameter reentrant rod-pinch diode (RPD), a forward-directed dose of 740 rad(LiF) at 1 m in a 50-ns full-width at half-maximum radiation pulse is predicted. For a 2-mm-diameter nonreentrant RPD, a forward-directed dose of 1270 rad(LiF) is predicted. For both RPDs, the on-axis X-ray spot size is comparable to the rod diameter. A self-similar hydrodynamic model for rod expansion indicates that spot-size growth from hydrodynamic effects should be minimal. For the planar SMPD, a forward-directed dose of 1370 rad(LiF) and a similar X-ray spot size are predicted. These results show that the nonreentrant RPD and the planar SMPD are very attractive candidates for negative-polarity high-resolution X-ray sources for voltages of up to 10 MV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.