Abstract

IntroductionOwing to loads of industrial development and advancements, there is an unmet need for green-ecosystem support as well as safe technologies. For cost-cutting and eco-friendly applications, biosynthetic pathways for nanoparticle synthesis from microbes like bacteria, and fungi have attracted the global attention of researchers. MethodsIn the present research work, silver nanoparticles (AgNPs) from fungus (mycogenic) were extracellularly synthesized with cell-free filtrates of fungal phytopathogen Sclerotinia sclerotiorum MTCC 8785 harvested from broth culture in Potato dextrose broth (CFF-PDB) and Amylase production media (CFF-AMP). The synthesis was carried out at pH 7, 28 °C under dark conditions. The synthesized AgNPs were characterized using UV spectrophotometer and transmission electron microscopy (TEM). Furthermore, the antifungal efficacy of AgNPs was evaluated against the Trichoderma harzianum MTCC 801 strain by radial inhibition assay. ResultsPrimarily, the process of biosynthesis was inferred by the characteristic change of color and spectral peak at 420 nm recorded with UV spectrophotometer further approved the nano silver production in CFF-AMP which approves the role of amylases in reduction mediated capping process. TEM analysis revealed that the AgNPs synthesized using S. sclerotiorum MTCC 8785 grown in PDB were spherical with variable size ranges from 10 to 50 nm in diameter whereas, the AgNPs synthesized using S. sclerotiorum MTCC 8785 grown in APM were in the size ranges from 40 to 50 nm. ConclusionsThis is the first investigatory concern where nano-silver from fungal phytopathogen S. sclerotiorum MTCC 8785 has been prospected as new age antifungal alternatives against evolving threats from T. harzianum strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.