Abstract

Simple sequence repeat (SSR) markers are valuable tools for many purposes such as phylogenetic, fingerprinting, and molecular breeding studies. However, only a few SSR markers are known and available in bamboo species of the tropics (Bambusa spp.). Considering that grass genomes have co-evolved and share large-scale synteny, theoretically it should be possible to use the genome sequence based SSR markers of field crops such as rice (Oryza sativa) and sugarcane (Saccharum spp.) for genome analysis in bamboo. To test this, 98 mapped SSR primers representing 12 linkage groups of rice and 20 EST-derived sugarcane SSR primers were evaluated for transferability to 23 bamboo species. Of the tested markers, 44 (44.9%) rice and 15 (75%) sugarcane SSR primers showed repeatable amplification in at least one species of bamboo and thus were successfully utilized for phylogenetic and genetic diversity analyses. Transferred SSR primers revealed complex amplification patterns in bamboo, with an average of 9.62 fragments per primer, indicating a high level of polyploidy and genetic variability in bamboo. Forty-two of these primers (34 rice and 8 sugarcane SSR primers) detected an average of 2.12 unique fragments per primer and thus could be exploited for species identification. Six bamboo SSR primers exhibited cross transferability, to varying degrees, to different bamboo species. The genetic similarity coefficient indicated a high level of divergence at the species level (73%). However, a relatively low level of diversity was observed within species (25% in 20 accessions of Dendrocalamus hamiltonii). Further, cluster analysis revealed that the major grouping was in accordance with the taxonomical classification of bamboo. Thus, the rice and sugarcane SSRs can be utilized for phylogenetic and genetic diversity studies in bamboo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call