Abstract

The study of residual stress has long been an important research field in science and engineering, due to the fact that uncontrolled residual stresses are detrimental to the performance of products. Numerous research contributions have been devoted to the quantification of residual stress states for the purpose of designing engineering components and predicting their lifetime and failure in service. For the purposes of the present study these can be broadly classified into two main approaches, namely, the interpretation of experimental measurements and process modelling. In this paper, a novel approach to residual stress analysis is developed, called here the Eigenstrain Reconstruction Method (ERM). This is a semi-empirical approach that combines experimental characterisation, specifically, residual elastic strain measurement by diffraction, with subsequent analysis and interpretation based on the eigenstrain theory. Three essential components of the ERM, i.e. the residual strain measurement, the solution of the inverse problem of eigenstrain theory, and the Simple Triangle (SIMTRI) method, are described. The ERM allows an approximate reconstruction of the complete residual strain and stress state in the entire engineering component. This is a significant improvement compared to the experimentally obtained limited knowledge of stress components at a selected number of measurement points, or to the simple interpolation between these points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.