Abstract
Austenitic stainless steel is welded as a cladding on the inner surface of a reactor pressure vessel (RPV) made of low alloy steel. In order to assess the structural integrity of the RPV precisely, the residual stress distribution caused by weld-overlay cladding and post-weld heat treatment (PWHT) is evaluated. Since the cladding layer is very thin compared to the vessel wall, it is necessary to evaluate the residual stress distribution around the weld fusion line, which can be very steep. In this study, cladded specimens were fabricated using different welding methods. Residual stress measurements using both sectioning and deep hole drilling (DHD) methods were then performed to evaluate the residual stress distributions through the weld fusion line. Three-dimensional thermal-elastic-plastic-creep analyses based on the finite element method were also conducted to evaluate the residual stress caused by weld-overlay cladding and PWHT. It was shown that analytical results provided reasonable agreements on weld residual stress with experimental results. It was also clarified that the main cause of residual stress due to welding and PWHT was the difference of thermal expansion between weld and base metals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.