Abstract

In order to assess the structural integrity of a reactor pressure vessel (RPV), it is assumed that a surface crack resides through the cladding at the inner surface of the vessel. It is, therefore, important to precisely evaluate stress intensity factor (SIF) under the residual stress field due to weld overlay cladding and post-weld heat treatment (PWHT). In this work, numerical simulation based on thermal-elastic-plastic-creep analysis using finite element method was performed to evaluate residual stress distribution near the cladding layer produced by weld overlay cladding and PWHT. The tensile residual stress of about 400 MPa occurs in the cladding at room temperature after the PWHT. The residual stress distributions under the normal operating conditions (system pressure and temperature) of RPV were also evaluated. The effect of residual stress and evaluation methods on SIF behavior for various crack size were studied under typical pressurized thermal shock (PTS) conditions such as small break loss of coolant accident (SBLOCA), main steam line break (MSLB) and large break loss of coolant accident (LBLOCA). It is clarified from comparison of this weld simulation with the other simple methods that SIF is affected by residual stress by weld overlay cladding and PWHT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.