Abstract
AbstractThis study evaluates how well reanalyses represent daily and multiday accumulated precipitation (hereinafter daily PCP) over British Columbia, Canada (Part I evaluated 2-m temperature). Reanalyses are compared with observations from 66 meteorological stations distributed over the complex terrain of British Columbia, separated into climate regions by k-means clustering. Systematic error, two-sample χ2 statistic, and frequency of daily PCP occurrence are evaluated from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), the Climate Forecast System Reanalysis (CFSR), the Japanese 55-year Reanalysis (JRA-55), and the latest Modern-Era Retrospective Analysis for Research and Applications (version 2; MERRA-2). The 2- and 30-yr return levels of daily PCP are estimated from a generalized extreme value (GEV) distribution fitted by the method of L moments, and their systematic errors are analyzed. JRA-55 and MERRA-2 generally outperform ERA-Interim and CFSR across all metrics. Biases are largely explained by poor reanalysis representation of terrain characteristics such as steepness, exposure, elevation, location of barriers, and wind speed and direction. Statistical stationarity of precipitation intensity and frequency over the 30-yr period is assessed by using confidence intervals and GEV distributions fitted with and without time-dependent parameters. It is determined that stationary distributions are sufficient to represent the climate of daily PCP for this region and time period.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have