Abstract

A radiative heat transfer code, based on the Discrete Transfer method, is used in combination with a spectral radiative database and a thermochemical nonequilibrium Navier–Stokes flowfield solver, to compute radiative heating under vibrational nonequilibrium conditions for the re-entry test vehicle FIRE II. The trajectory point under scrutiny refers to a flight velocity of 8.3 km/s, where radiative equilibrium prevails. Numerical predictions indicate a quite good agreement with experimental data, both for the radiative intensity along the stagnation streamline and for the total (convective plus absorbed radiative) heat flux at the stagnation point. The Discrete Transfer method makes the code applicable to arbitrarily complex geometries, and the vibrational nonequilibrium description allows considering re-entry from lunar or interplanetary return trajectories, as well as from terrestrial orbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.