Abstract

The association energy upon binding of different amino acids in the specificity pocket of trypsin was evaluated by free energy perturbation calculations on complexes between bovine trypsin (BT) and bovine pancreatic trypsin inhibitor (BPTI). Three simulations of mutations of the primary binding residue (P(1)) were performed (P(1)-Ala to Gly, P(1)-Met to Gly and P(1)-Met to Ala) and the resulting differences in association energy (DeltaDeltaG(a)) are 2. 28, 5.08 and 2.93 kcal/mol for P(1)-Ala to Gly, P(1)-Met to Gly and to Ala with experimental values of 1.71, 4.62 and 2.91 kcal/mol, respectively. The calculated binding free energy differences are hence in excellent agreement with the experimental binding free energies. The binding free energies, however, were shown to be highly dependent on water molecules at the protein-protein interface and could only be quantitatively estimated if the correct number of such water molecules was included. Furthermore, the cavities that were formed when a large amino acid side-chain is perturbed to a smaller one seem to create instabilities in the systems and had to be refilled with water molecules in order to obtain reliable results. In addition, if the protein atoms that were perturbed away were not replaced by water molecules, the simulations dramatically overestimated the initial state of the free energy perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.