Abstract
Electrospinning is well known to be an effective method for fabricating polymeric nanofibers with a diameter of several hundred nanometers. Recently, the molecular-level orientation within nanofibers has attracted particular attention. Previously, we used atomic force microscopy to visualize the phase separation between soft and hard segments of a polyurethane (PU) nanofiber surface prepared by electrospinning. The unstretched PU nanofibers exhibited irregularly distributed hard segments, whereas hard segments of stretched nanofibers prepared with a high-speed collector exhibited periodic structures along the long-axis direction. PU was originally used to inhibit protein adsorption, but because the surface segment distribution was changed in the stretched nanofiber, here, we hypothesized that the protein adsorption property on the stretched nanofiber might be affected. We investigated protein adsorption onto PU nanofibers to elucidate the effects of segment distribution on the surface properties of PU nanofibers. The amount of adsorbed protein on stretched PU nanofibers was increased compared with that of unstretched nanofibers. These results indicate that the hard segment alignment on stretched PU nanofibers mediated protein adsorption. It is therefore expected that the amount of protein adsorption can be controlled by rotation of the collector.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have