Abstract

Abstract Particulate organic matter (POM) and light fraction (LF) organic matter are potentially labile (active) fractions of soil organic matter (SOM) that have been shown to be indicators of short-term changes in soil management practices (e.g. tillage, manure and fertilizer applications, and crop rotation). These two fractions consist mainly of partially decomposed plant residues, microbial residues, seeds, and spores forming organo-mineral complexes with soil mineral particles; however, they cannot be used as synonyms because of their different chemical composition and structure. Particulate-OM is recovered by size-based procedures while LF is generally recovered in two distinct fractions [free-LF (FLF) and occluded-LF (OLF)] using density-based solutions in conjunction with soil-aggregate disruption. Solutions used in these density-based separations have most commonly varied in density from 1.6 to 2.0 g cm −3 . Sodium iodide (NaI) and sodium polytungstate (SPT) are the chemicals most often used to prepare the density solutions in LF recovery but comparisons of the effectiveness of two solutions have not been conducted. The objectives of this research were: (1) compare the efficiency of similar density solutions of NaI and SPT in recovering FLF; and (2) compare POM, FLF, and OLF as possible sensitive indices of short-term soil changes due to tillage management. Soil samples were collected at 0–15 cm depth from a cropping system experiment conducted on a silt loam Ultisol. Plots selected for sampling had received either reduced till (RT) or no-till (NT), and cropping was continuous corn silage for a period of 3 years prior to sampling. Solutions of NaI and SPT at densities of 1.6 and 1.8 g cm −3 were used to recover FLF, and OLF was recovered with SPT solution at a density of 2.0 g cm −3 from the soil pellet remaining after FLF recovery with SPT 1.6 g cm −3 . The average total soil organic carbon (SOC) content of these samples was of 12.7 g kg −1 , and carbon-POM (C-POM), carbon-FLF (C-FLF), and carbon-OLF (C-OLF) represented 22.4, 5.5, and 5.2% of it, respectively. In general, C-FLF and nitrogen-FLF (N-FLF) contents recovered did not differ significantly between chemical solutions (NaI or SPT) adjusted to the same density (1.6 or 1.8 g cm −3 ). Increasing the density within a specific solution (NaI or SPT) resulted in significantly higher C-FLF and N-FLF recovery. For instance, C-FLF recovery averaged 637 and 954 mg kg −1 at 1.6 and 1.8 g cm −3 , respectively. For both chemicals increasing density from 1.6 to 1.8 g cm −3 reduced the variability in recovering C-FLF and N-FLF with coefficient of variation values decreasing from a range of 14.9–19.1% for densities of 1.6 g cm −3 to 6.7–10.4% when densities increased to 1.8 g cm −3 . In the present work, POM and OLF were more sensitive than FLF to changes in tillage management, with significantly greater amounts of the sensitive fractions in RT samples. A better sensitivity of FLF would be expected if treatments dealing with residue input (e.g. crop rotation and cover crop) were evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call