Abstract
The autonomous navigation of unmanned ground vehicles (UGVs) in unstructured environments, such as agricultural or forestry settings, has been the subject of extensive research by various investigators. The navigation capability of a UGV in unstructured environments requires considering numerous factors, including the quality of data reception that allows reliable interpretation of what the UGV perceives in a given environment, as well as the use these data to control the UGV’s navigation. This article aims to study different PID control algorithms to enable autonomous navigation on a robotic platform. The robotic platform consists of a forestry tractor, used for forest cleaning tasks, which was converted into a UGV through the integration of sensors. Using sensor data, the UGV’s position and orientation are obtained and utilized for navigation by inputting these data into a PID control algorithm. The correct choice of PID control algorithm involved the study, analysis, and implementation of different controllers, leading to the conclusion that the Vector Field control algorithm demonstrated better performance compared to the others studied and implemented in this paper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have