Abstract

Hydrocephalus is a neurological disorder characterized by an abnormal accumulation of cerebrospinal fluid (CSF) within the ventricular system of the brain, leading to cerebral ventricular dilation, brain parenchyma compression, and neuronal cell loss. Surgery is an effective method of draining excessive amounts of CSF. Ventriculoperitoneal shunt (VPS) allows excess CSF to divert into the abdomen; this device is the most commonly used in the treatment of hydrocephalus both in veterinary and human patients. This study aims to describe the application of two types of VPS, low-pressure valve and medium-pressure valve, using a frameless stereotactic neuronavigational system in eight severe hydrocephalus in dogs and, in particular, analyze the prevalence of postoperative overshunting. Non-communicating hydrocephalus was found in seven dogs, whereas the rest of them had communicating hydrocephalus caused by traumatic brain injury with a skull fracture. The criteria for pressure valve selection depended on the intraoperative intraventricular pressure (IVP) that was determined by the adaptive manometer, according to the human protocol. Low-pressure valve placement was performed in five dogs, and the others received medium-pressure valve placement. The follow-up period was 2 weeks, 4–12 weeks, and 12 weeks to 12 months. Pre- and postoperative information including neurological signs, CT-Scan or MRI, medical treatment, complications, and ventricular volume were compared in all dogs. Seven dogs showed neurological improvement within 2 weeks after surgery. Overshunting was seen in four dogs who received low-pressure valve placement. Three of them had shunt infections within 4 to 6 weeks after surgery. One dog underwent shunt revision from a low-pressure valve to a medium-pressure valve caused by severe overshunting and progressive neurological signs. In addition, cognitive and learning improvements were evaluated based on the owners’ feedback, and neurological signs were examined during the follow-up period in two dogs that received low-pressure valve placement. We conclude that a medium-pressure valve is recommended for overshunting prevention. However, low-pressure valve placement seems to improve cognitive function and learning ability, which is related to an increase in the brain parenchyma observed during long-term monitoring. Moreover, we also report our experience and surgical procedure for frameless stereotactic ventricular shunt placement (FSVSP) in VPS surgery in dogs affected by hydrocephalus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.