Abstract

Zircon contains small amounts of uranium, thorium and radium in its crystalline structure. The ceramic industry is one of the major consumers of zirconium compounds that are used as an ingredient at ∼10-20 % by weight in glaze. In this study, seven different ceramic factories have been investigated regarding the presence of radioactive elements with focus on natural radioactivity. The overall objective of this investigation is to provide information regarding the radiation exposure to workers in the ceramic industry due to naturally occurring radioactive materials. This objective is met by collecting existing radiological data specific to glaze production and generating new data from sampling activities. The sampling effort involves the whole process of glaze production. External exposures are monitored using a portable gamma-ray spectrometer and environmental thermoluminescence dosimeters, by placing them for 6 months in some workplaces. Internal routes of exposure (mainly inhalation) are studied using air sampling, and gross alpha and beta counting. Measurement of radon gas and its progeny is performed by continuous radon gas monitors that use pulse ionisation chambers. Natural radioactivity due to the presence of ²³⁸U, ²³²Th and ⁴⁰K in zirconium compounds, glazes and other samples is measured by a gamma-ray spectrometry system with a high-purity germanium detector. The average concentrations of ²³⁸U and ²³²Th observed in the zirconium compounds are >3300 and >550 Bq kg⁻¹, respectively. The specific activities of other samples are much lower than in zirconium compounds. The annual effective dose from external radiation had a mean value of ∼0.13 mSv y⁻¹. Dust sampling revealed the greatest values in the process at the powdering site and hand weighing places. In these plants, the annual average effective dose from inhalation of long-lived airborne radionuclides was 0.226 mSv. ²²²Rn gas concentrations in the glaze production plant and storage warehouse were found to range from 10 to 213 Bq m⁻³. In this study, the estimated annual effective doses to exposed workers were <1 mSv y⁻¹.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call