Abstract

Recent evidences of the impact of regional climate variability, coupled with the intensification of human activities, have led hydrologists to study flood regime without applying the hypothesis of stationarity. In this study, identification of nonstationarity was conducted in the form of both trend and change point in the mean of the annual maximum flood magnitudes, using Mann-Kendall and Pettitt test, respectively in Wangkuai reservoir watershed, China. The annual maximum flood series exhibited a significant decreasing trend, and the timing of change point was detected in 1979, which was consistent with the construction of large numbers of check dams and small hydraulic structures. A correlation test (Pearson correlation test) between large-scale oceanic-atmospheric patterns (El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Pacific Oscillation (NPO), North Atlantic Oscillation (NAO), Atlantic Oscillation (AO)) and annual maximum flood peaks was adopted to assess the climatic causes of nonstationary flood series. It was found that NPO, NAO and AO had significant correlations with flood peak, but ENSO and PDO could not explain the variations of flood peak. In the case of human-induced nonstationarity, we proposed 2 new indices to represent the effect of human activities on flood. The new indices were proposed based on the storage capacity and drainage area of the large numbers of check dams and small hydraulic structures which were estimated with no observed data. The identification of nonstationarity for flood series and the climatic and human-induced causes could provide useful information in nonstationary flood frequency analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.