Abstract

Accurate information on the extent of waterlogging is required for flood prediction, monitoring, relief and preventive measures. The rule-based classification algorithms were used for differentiating waterlogged areas from other ground features using Resourcesat-2 AWiFS satellite imagery (Indian Remote Sensing Satellite with spatial resolution of 56 m). Two spectral indices normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) were used for extracting waterlogged areas in Sri Muktsar Sahib district of Punjab, India. These indices extracted the waterlogged areas (cropped areas inundated with water) but the water features were less enhanced in the NDWI-derived image (when compared with MNDWI-derived image) due to negative values of NDWI and, mixing of water with built up features. The water features were more enhanced with MNDWI and the values of MNDWI were positive for water features mixed with vegetation. The overall accuracy of waterlogged areas extracted from the MNDWI image was 96.9% with the Kappa coefficient of 0.89. The digital elevation model (DEM) was extracted from ASTER-GDEM. The relationships among depth to the water table recorded before the incessant rain in the region, DEM and classified MNDWI images explained the differences in the extent of waterlogging in various directions of the study area. These results suggest that MNDWI can be used to better delineate water features mixed with vegetation compared to NDWI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call