Abstract

Different methods for evaluation of displacement and strain fields based on phase field crystal (PFC) simulations are shown. Methods originally devised for molecular dynamics (MD) simulations or analysis of high-resolution microscopy images are adapted to a PFC setting, providing access to displacement and strain fields for systems of discrete atoms, such as in MD, as well as to continuous deformation fields. The latter being achieved by geometrical phase analysis. As part of the study, the application of prescribed non-affine deformations in a 3D structural PFC (XPFC) setting is demonstrated as well as an efficient numerical scheme for evaluation of PFC phase diagrams, such as, for example, those required to stabilize solid/liquid coexistence. The present study provides an expanded toolbox for using PFC simulations as a versatile numerical method in the analysis of material behavior at the atomic scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.