Abstract

Abstract Three different dynamic initialization schemes for tropical cyclone (TC) prediction in numerical prediction systems are described and evaluated. The first scheme involves the removal of the analyzed vortex, followed by the insertion of a dynamically initialized vortex into the model analyses. This scheme is referred to as the tropical cyclone dynamic initialization scheme (TCDI) because the TC component is nudged to the observed surface pressure in an independent three-dimensional primitive equation model prior to insertion. The second scheme is a 12-h relaxation to the analyses' horizontal momentum before the forecast integration begins, and is called the dynamic initialization (DI) scheme. The third scheme is a combination of the previous two schemes, and is called the two-stage dynamic initialization scheme (TCDI/DI). In the first stage, TCDI is implemented in order to improve the representation of the TC vortex. In the second stage, DI is invoked in order to improve the balance between the inserted TC vortex and its environment. All three dynamic initialization schemes are compared with a control (CNTL) scheme, which creates the initial vortex using synthetic TC observations that match the observed intensity and structure in a three-dimensional variational data assimilation (3DVAR) system. The four schemes are tested on 120 cases in the North Atlantic and western North Pacific basins during 2010 and 2011 using the Naval Research Laboratory's TC prediction model: Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC). It is demonstrated that TCDI/DI performed the best overall with regard to intensity forecasts, reducing the average minimum central pressure error for all lead times by 24.4% compared to the CNTL scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.