Abstract

Two different initialization schemes for tropical cyclone (TC) prediction in numerical models are evaluated based on a case study of Typhoon Lekima (2019). The first is a dynamical initialization (DI) scheme where the axisymmetric TC vortex in the initial conditions is spun up through the 6-h cycle runs before the initial forecast time. The second scheme is a bogussing scheme where the analysis TC vortex is replaced by a synthetic Rankine vortex. Results show that although both initialization schemes can help improve the simulated rapid intensification (RI) of Lekima, the simulation employing the DI scheme (DIS) reproduces better the RI onset and intensification rate than that employing the bogussing scheme (BOG). Further analyses show the cycle runs of DI help establish a realistic TC structure with stronger secondary circulation than those in the control run and BOG, leading to fast vortex spinup and contraction of the radius of maximum wind (RMW). The resultant strong inner-core primary circulation favors precession of the midlevel vortex under the moderate vertical wind shear (VWS) and thus helps vortex alignment, contributing to an earlier RI onset. Afterwards, the decreased vertical shear and the stronger convection inside the RMW support the persistent RI of Lekima in DIS. In contrast, the reduced VWS is not well captured and the inner-core convection is weaker and resides farther away from the TC center in BOG, leading to slower intensification. The results imply that the DI effectively improves the prediction of the inner-core process, which is crucial to the RI forecast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.