Abstract
The performance characteristics of multidimensional liquid chromatographic protein separations were evaluated using on-line electrospray mass detection, and a novel workflow for automated LC/MS data processing. Two-dimensional ion exchange/reversed-phase LC separations of Escherichia coli cytosol were conducted using either a continuous linear or discontinuous step gradient in the first dimension. Chromatographic profiles of the top 100 most abundant components were characterized to assess overall separation reproducibility within each mode, and to characterize differences in component distribution between the two modes of operation. Analysis of the resulting data indicates that multidimensional separations of complex protein mixtures can be done reproducibly. Furthermore, under the conditions employed within this study, a linear first dimension gradient was more effective at fractionating the protein mixture, distributing fewer major components to multiple second dimension cycles than an equivalent step gradient. The application of on line mass spectrometry, and automated processing of the resulting data, proved valuable for producing component level analysis of multidimensional protein separations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.