Abstract

The performance of MM5 mesoscale model (Version 3.6.3) using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations is evaluated and compared using high temporal and spatial resolution GOTE2001 campaign data at local scale (a few kilometers) over the Greater Goteborg area along the Swedish west coast during 7–20 May 2001. The focus is on impact of PBL and LSM parameterizations on simulated meteorological variables important for air quality applications such as global radiation, diurnal cycle of near-surface air temperature and wind, diurnal cycle intensity, near-surface vertical temperature gradient, nocturnal temperature inversion, boundary layer height, and low-level jet (LLJ). The model performance for daytime and nighttime and under different weather conditions is also discussed. The purpose is to examine the performance of the model using different PBL and LSM parameterizations at local scale in this area for its potential applications in air quality modeling. The results indicate that the influence of PBL and LSM parameterizations on simulated global radiation, diurnal cycle of near-surface air temperature and wind speed, diurnal cycle intensity, vertical temperature gradient, nocturnal temperature inversion and PBL heights, which are critical parameters for air quality applications, is evident. Moreover, the intensity and location of LLJ are simulated well by all schemes, but there also exist some differences between simulated results by using different PBL and LSM schemes. Therefore, the choice of PBL and LSM parameterizations is important for MM5 applications to air quality studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call