Abstract

The complex configuration of the northeastern Iberian Peninsula (NEIP) provokes a complex behavior of photochemical pollutants, which demands a high spatial resolution when applying an air quality model. CMAQ has been used for air quality assessment in the NEIP coupled with the MM5 meteorological model and EMICAT2000 emission model, and has been extensively evaluated against available ambient data during a typical summertime photochemical pollution episode. Simulations with different resolutions were evaluated to select the needed grid resolution. Meteorological inputs are sensitive to the degree of topographical smoothing. Fine-resolution simulations present the best scores during the development of the sea breeze. The performance of statistical parameters for ground-level O 3 greatly improves when decreasing the horizontal and vertical grid spacing. Statistical parameters indicate that decreasing the horizontal grid spacing to 2 km greatly improves the critical success index, the false alarm ratio and the probability of detection. Furthermore, sensitivity studies provide the opportunity to check whether O 3 values react consistently to similar changes in emissions. The model sensitivity was evaluated by performing simulations to represent O 3 formation with baseline emission rates for VOCs and NO x , and reducing anthropogenic VOC and NO x emissions by 35%. Evaluation of ground-level O 3 shows a good agreement when the model predicts dominant VOC-sensitive chemistry. Statistical parameters of O 3 evaluation worsen when reducing VOCs emissions and improve in the—35% NO x case, indicating that the O 3-production chemistry may not be sufficiently reactive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.