7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1177/1091581816661853
Copy DOIJournal: International Journal of Toxicology | Publication Date: Aug 19, 2016 |
Citations: 20 |
Nanosized titanium dioxide (nano-TiO2) is widely used in the chemical, electrical, and electronic industries. Nanosized TiO2 has been reported to be an efficient photocatalyst, which is able to produce reactive oxygen species (ROS) under UVA irradiation. In the present work, we evaluate the effect of mitochondrial respiratory chain on the generation of ROS and cytotoxicity in keratinocyte (HaCaT) cells induced by nano-TiO2 under UVA irradiation. HaCaT cells were pretreated with different inhibitors of mitochondrial respiratory chain and followed by treatment with 200 µg/mL nano-TiO2, then exposed to UVA (365 nm) for 1 hour and cultured for 24 hours. Our results demonstrated that the complexes I and III of the mitochondrial respiratory chain are the major site in the ROS generation induced by nano-TiO2 Our results also demonstrated that the uncouplers of mitochondrial oxidative phosphorylation resulted in obvious changes in the production of intracellular ROS induced by nano-TiO2 The ROS sources of lipoxygenase, cyclooxygenase, and nicotinamide adenine dinucleotide phosphate oxidase had no significant effect on the ROS production. To some extent, nitric oxide synthase had effect on the ROS production. These results indicated that mitochondrial respiratory chain may be the main source of intracellular ROS production induced by nano-TiO2.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.