Abstract
CpG methylation within the O6-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with enhanced survival of glioblastoma multiforme (GBM) patients treated with temozolomide (TMZ). Although MGMT promoter is methylated in approximately 50% of GBM, several studies have reported a lack of correlation between MGMT methylation and protein expression levels and consequently inaccurate discrimination of TMZ sensitive and resistant patients. To understand the limitations of currently used assays, TMZ responsiveness of 13 GBM xenograft lines was correlated with MGMT protein expression and MGMT promoter methylation determined by (1) standard methylation-specific polymerase chain reaction (MS-PCR), (2) quantitative MS-PCR (qMS-PCR), and (3) bisulfite sequencing. For each xenograft line, mice with established intracranial xenografts were treated with vehicle control or TMZ (66 mg/kgx5 days), and TMZ response was defined as relative prolongation in median survival for TMZ-treated versus control-treated mice. The relative survival benefit with TMZ was inversely related to MGMT protein expression (r=-0.75; P=0.003) and directly correlated with qMS-PCR (r=0.72; P=0.006). There was a direct correlation between MGMT methylation signal by qMS-PCR and the number of methylated CpG sites within the region amplified by MS-PCR (r=0.78, P=0.002). However, bisulfite sequencing revealed heterogeneity in the extent of CpG methylation in those tumors with a robust qMS-PCR signal. Three of the 4 GBM lines with a qMS-PCR signal greater than 10% had at least 1 unmethylated CpG site, while only one line was fully methylated at all 12 CpG sites. These data highlight one potential limitation of the evaluation of MGMT methylation by MS-PCR assay and suggest that more detailed evaluation of methylation at individual CpG sites relative to TMZ response may be worth pursuing.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have