Abstract
In this paper, contributions of the mechanical and electric power losses have been studied in a typical piezoelectric ultrasonic transducer under free conditions. The losses in a Langevin ultrasonic transducer can be divided into three parts: dielectric loss of piezoelectric, structural damping loss of the transducer’s mechanical components, and losses due to the friction of contact surfaces. In order to estimate dielectric losses, loss factor or tanδ of the piezoelectric ceramic have been measured. Dielectric power loss is obtained by calculating the electrical energy stored in a piezoelectric and using the loss factors. The structural damping of the mechanical components of the transducer is calculated using the mechanical quality factors of each component. The factors have been measured using the standard modal tests. Structural power losses are obtained by calculating the elastic energy stored in each component and using the mechanical quality factors. Based on the calculations for the transducer with the resonance frequency of 20 kHz, under free conditions, the input power is 532 W, the total structural power loss at the resonance frequency is 221.82 W, the dielectric power loss is 15 W, and the power loss due to friction is 184.18 W.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have