Abstract

With the rising prevalence of diabetes, machine learning (ML) models have been increasingly used for prediction of diabetes and its complications, due to their ability to handle large complex data sets. This study aims to evaluate the quality and performance of ML models developed to predict microvascular and macrovascular diabetes complications in an adult Type 2 diabetes population. A systematic review was conducted in MEDLINE®, Embase®, the Cochrane® Library, Web of Science®, and DBLP Computer Science Bibliography databases according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist. Studies that developed or validated ML prediction models for microvascular or macrovascular complications in people with Type 2 diabetes were included. Prediction performance was evaluated using area under the receiver operating characteristic curve (AUC). An AUC >0.75 indicates clearly useful discrimination performance, while a positive mean relative AUC difference indicates better comparative model performance. Of 13 606 articles screened, 32 studies comprising 87 ML models were included. Neural networks (n = 15) were the most frequently utilized. Age, duration of diabetes, and body mass index were common predictors in ML models. Across predicted outcomes, 36% of the models demonstrated clearly useful discrimination. Most ML models reported positive mean relative AUC compared with non-ML methods, with random forest showing the best overall performance for microvascular and macrovascular outcomes. Majority (n = 31) of studies had high risk of bias. Random forest was found to have the overall best prediction performance. Current ML prediction models remain largely exploratory, and external validation studies are required before their clinical implementation. Open Science Framework (registration number: 10.17605/OSF.IO/UP49X).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.