Abstract

In this work, several machine learning (ML) algorithms, both classical ML and modern deep learning, were investigated for their ability to improve the performance of a pipeline for the segmentation and classification of prostate lesions using MRI data. The algorithms were used to perform a binary classification of benign and malignant tissue visible in MRI sequences. The model choices include support vector machines (SVMs), random decision forests (RDFs), and multi-layer perceptrons (MLPs), along with radiomic features that are reduced by applying PCA or mRMR feature selection. Modern CNN-based architectures, such as ConvNeXt, ConvNet, and ResNet, were also evaluated in various setups, including transfer learning. To optimize the performance, different approaches were compared and applied to whole images, as well as gland, peripheral zone (PZ), and lesion segmentations. The contribution of this study is an investigation of several ML approaches regarding their performance in prostate cancer (PCa) diagnosis algorithms. This work delivers insights into the applicability of different approaches for this context based on an exhaustive examination. The outcome is a recommendation or preference for which machine learning model or family of models is best suited to optimize an existing pipeline when the model is applied as an upstream filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.