Abstract
Lung and liver tumor dose coverage was evaluated for the CyberKnife synchrony respiratory tracking system (SRTS) with consideration of the motion tracking accuracy measured for motion patterns of individual patients. Seven treatment plans of six cases treated with the SRTS were evaluated. The motion phantom was moved with the motion data derived from the treatment log files. A laser emitted from the linac head to the moving phantom block was recorded with a webcam, and the tracking accuracy was evaluated. The dose volume histogram (DVH) of planning target volume (PTV) and gross tumor volume (GTV) were calculated by a pencil beam algorithm with shifting the beams with Gaussian random numbers mimicking the measured tracking errors. The tracking errors measured with the motion phantom in the lateral direction were within ±2 mm for 90% of beam-on time. The tracking errors in the longitudinal direction were within ±3.0 mm and ±1.1 mm for 90% and 50% of beam-on time, respectively. Although one case showed a decrease in the dose covering 95% of PTV (D95%) by 1.8%, the change in the dose covering 99% of GTV (D99%) was within 1%. This study evaluated the motion tracking errors of the SRTS by a motion phantom moved with the patients' respiration signal, and the impact of the tracking errors on the target coverage was calculated. Even for respiratory patterns with large maximum tracking errors, sufficient GTV coverage is achievable if the beam is accurately delivered for high percentage of beam-on time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.