Abstract

The performance of a microbial fermentation on an industrial scale is subjected to the robustness of the strain. Such strains are genetically engineered to optimize the production of desired compounds in minimal time, but they often fail to maintain high productivity levels for many generations, hindering their effective application in industrial conditions. This study focused on assessing the impact of genomic instability in yeasts that were engineered to produce a fluorescent output by incorporating a reporter gene at one or more genomic locations. The fermentation performance of these strains was evaluated over 100 generations in a sequential batch set-up. In order to bridge the gap between strain engineering and industrial implementation, we proposed the use of novel, host-specific parameters to standardize the strain robustness and evaluate potential improvements. It was observed that yeasts carrying multiple copies of the reporter gene exhibited a more pronounced decrease in output, and the genomic integration site significantly influenced the production. By leveraging these new, host-specific parameters, it becomes possible to anticipate strain behavior prior to incurring substantial costs associated with large-scale production. This approach enhances the economic viability of novel microbial fermentation processes and narrows the divide between laboratory findings and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.