Abstract
Recently, it has become possible to evaluate left ventricular (LV) torsion by two-dimensional (2D) speckle tracking images. However, LV torsion is a three-dimensional (3D) performance, which per se cannot be assessed by the 2D speckle tracking method. The present study investigated the accuracy of the 2D speckle tracking method and real-time 3D echocardiography in measuring LV rotation, comparing with the MRI tagging method. We assessed LV apical rotation using the 2D speckle tracking method, real-time 3D echocardiography, and MRI tagging method in 26 normal subjects, and compared the results of these three methods. LV apical rotation was measured just before the level in which the posterior papillary muscle was absorbed into the free wall. The degree of LV apical rotation evaluated by the 2D speckle tracking method (Δθ 2D) was significantly smaller than that evaluated by 3D echocardiography (Δθ 3D) and the MRI tagging method (Δθ MRI) (Δθ 2D 7.3±2.8°; Δθ 3D 8.8±3.4°; Δθ MRI 9.0±3.4°; Δθ 2D vs. Δθ 3D, p=0.0001; Δθ 2D vs. Δθ MRI, p<0.0001). There were good correlations among Δθ 2D, Δθ 3D, and Δθ MRI, but agreement between Δθ 3D and Δθ MRI (mean difference 0.14±1.43°) was better than that between Δθ 2D and Δθ MRI (mean difference 1.68±1.89°). The degree of LV apical rotation was underestimated with the 2D speckle tracking method compared with the MRI tagging method, whereas it could be precisely measured by 3D echocardiography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.