Abstract

The effect of tissue engineering strategies in combination with Lactobacillus plantarum and platelet-rich growth factor (PRGF) with the aim of creating an appropriate wound dressing can be useful in wound healing and infection prevention in patients suffering from acute and chronic skin damages. Therefore, in this study, a new approach was employed to create a bioactive multilayer electrospun scaffold composed of polyurethane (PU), PRGF, and gelatin fibers, then human adipose-derived mesenchymal stem cells (hAMSCs), fibroblast cells (HU-02) and L. plantarum were cultured on the scaffold. The physicochemical properties, biocompatibility, and antibacterial activity of the scaffold were evaluated. In addition, the expression of the migration and proliferation genes of fibroblast cells were investigated by real-time PCR (polymerase chain reaction). Mitochondrial activity assays revealed that PRFG and L. plantarum had a significant positive effect on the viability of target co-cultured cells.Fluorescent and SEM (scanning electron microscopy) images presented the cells and bacterial proliferation and adhesion in hydrophilic scaffolds within 21 days. The sustained release of PRGF from scaffolds with a zero-order pattern was confirmed. RT-PCR analysis revealed that PRGF elevated the expression of VEGF genes up to fourfold, but L. plantarum had a better effect on DDR2 gene expression compared to the TCPS group. Antibacterial tests showed that L. plantarum has a bacterial load reduction of more than 70% in CFU/mL. The present scaffold is an appropriate model for cell attachment, migration, proliferation, and infection prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.