Abstract
Chemical modifications of proteins induced by ambient ozone (O3) and nitrogen oxides (NOx) are of public health concerns due to their potential to trigger respiratory diseases. The laboratory and environmental exposure systems have been widely used to investigate their relevant mechanism in the atmosphere. Using bovine serum albumin (BSA) as a model protein, we evaluated the two systems and aimed to reduce the uncertainties of both the reactants and products in the corresponding kinetic study. In the laboratory simulation system, the generated gaseous pollutants showed negligible losses. Ten layers of BSA were coated on the flow tube with protein extraction recovery of 87.4%. For environmental exposure experiment, quartz fiber filter was selected as the upper filter with low gaseous O3 (8.0%) and NO2 (1.7%) losses, and cellulose acetate filter was appropriate for the lower filter with protein extraction efficiency of 95.2%. The protein degradation process was observed without the exposure to atmospheric oxidants and contributed to the loss of protein monomer mass fractions, while environmental factors (e.g., molecular oxygen and ultraviolet) may cause greater protein monomer losses. Based on the evaluation, the study exemplarily applied the two systems to protein modification and both showed that O3 promotes the protein oligomerization and nitration, while increased temperature can accelerate the oligomerization and increased relative humidity can inhibit the nitration in the environmental exposure samples. The developed laboratory and environmental systems are suitable for studying protein modifications formed under different atmospheric conditions. A combination of the two will further reveal the actual mechanism of protein modifications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have