Abstract

The objective of the present study was to evaluate the effect of irradiance and radiant exposure on the chemical-mechanical properties of a resin composite. A micro-hybrid resin composite (Clearfil AP-X, Kuraray) was investigated under two different irradiances: low (300 mW/cm2) and high (800 mW/cm2) and radiant exposures: 8 and 16 J/cm2. Four groups, named Low 8 J/cm2, High 8 J/cm2, Low 16 J/cm2, and High 16 J/cm2 were tested, and their flexural strengths, elastic moduli, depths of cure, and degrees of conversion were evaluated. Data were analyzed using two-way ANOVA and Tukey's test. A multiple linear regression model was used to correlate the irradiance and radiant exposure with dependent variables (α = 0.05). Irradiance and radiant exposure were found statistically significant for all dependent variables. The interaction between the factors was statistically significant only for the degree of conversion and elastic modulus. Group Low 16 J/cm2 exhibited a significantly superior performance in all the evaluated properties. Barring the degree of conversion, no significant differences were observed among the properties evaluated between the Low 8 J/cm2 and High 8 J/cm2 groups. The adjusted R2 values were high for the depth of cure and degree of conversion (0.58 and 0.96, respectively). Both irradiance and radiant exposure parameters play an important role in establishing the final properties of a micro-hybrid resin composite. Irradiance has a greater influence under higher radiant exposures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.