Abstract

Figures 1 &2 show the phantoms, T2*-map, CT images, plots of R2* and HU versus iron-content, T2* curves fitting, and DECT iron-map. T2* ranged from 6 ms to 36 ms. There were strong correlations between iron-content and R2*, HU values and HU differences at different energy levels (r > 0.95 and P < 0.0001). There were moderate correlations between iron-content and HU ratios (except 80/140) with 0.42 < |r| < 0.76 and 0.02 < P < 0.2. The T2* relaxation curves of the 21 ms and 10 ms tubes were used to differentiate between normal, overloaded, and severely-overloaded iron (Figure 1d). The HU values of these two tubes showed perfect linear relationships with energy-level (E) over diagnostic levels 80-140 kVp: HU = -0.29E +56.3 and HU = -0.76E+151.8 for the 21 ms and 10 ms T2*-values. The resulting CT-map (Figure 2d) is used to identify three regions: normal, overloaded, and severely-overloaded iron. Conclusions DECT can be used for iron quantification with high accuracy similar to MRI, which might help in patient staging, independent of the energy level. New DECT scanners with low radiation-exposure, much shorter scan-time, and higher capability of measuring large iron-contents compared to MRI, may provide promising approach for evaluating myocardial iron overload.

Highlights

  • Iron toxicity is key factor for tissue damage in ironoverloaded patients, with induced heart failure as the main cause of death

  • The aim of this study is to investigate the performance of dualenergy CT (DECT) for iron mapping in in-vitro scans of calibrated iron phantoms and compare results to MRI

  • Two DECT scans were conducted with 80/140 kVp and 100/140 kVp, 0.3 mm resolution, and 2 s scan-time. 2-cm2 ROI’s were used to measure average signal intensities in MRI and Hounsfield Units (HU) in CT

Read more

Summary

Introduction

Iron toxicity is key factor for tissue damage in ironoverloaded patients, with induced heart failure as the main cause of death. T2*-weighted MRI has been established as the method of choice for evaluating iron-content with strong correlation with biopsy, where T2* < 20 ms and T2* < 10 ms at 1.5T indicate iron overload and severe iron overload, respectively. Recently-introduced dualenergy CT (DECT) has the potential for evaluating iron overload without energy-dependent CT attenuation or tissue fat effects.

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call