Abstract

Microspheres of tramadol hydrochloride (TM) for oral delivery were prepared by complex coacervation method without the use of chemical cross-linking agents such as glutaraldehyde to avoid the toxic reactions and other undesirable effects of the chemical cross-linking agents. Alternatively, ionotropic gelation was employed by using sodium-tripolyphosphate as cross-linking agent. Chitosan and gelatin B were used as polymer and copolymer, respectively. All the prepared microspheres were subjected to various physicochemical studies, such as drug-polymer compatibility by thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectroscopy, surface morphology by scanning electron microscopy, frequency distribution, drug entrapment efficiency, in vitro drug release characteristics and release kinetics. The physical state of drug in the microspheres was determined by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). TLC and FTIR studies indicated no drug-polymer incompatibility. All the microspheres showed initial burst release followed by a fickian diffusion mechanism. DSC and XRD analysis indicated that the TM trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. From the preliminary trials, it was observed that it may be possible to formulate TM microspheres by using biodegradable natural polymers such as chitosan and gelatin B to overcome the drawbacks of TM and to increase the patient compliance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.