Abstract
BackgroundIn soils, phosphorous (P) mostly exists in fixed/insoluble form and unavailable for plants use in soil solution, hence it is in scarcity. P is fixed in the form of aluminium, iron and manganese phosphates in acidic soils and calcium phosphate in alkaline soils. Phosphate solubilizing bacteria, the ecological engineers play a pivotal role in the mobilization of fixed forms of P by using different mechanisms. The objectives of this study were to evaluate inorganic phosphate solubilizing efficiency and other multiple plant growth promoting traits of Erythrina brucei root nodule endophytic bacteria and to investigate effects of the selected endophytic bacteria on the growth of wheat plant under phosphorous deficient sand culture at greenhouse conditions.ResultsAmong a total of 304 passenger endophytic bacteria, 119 (39%) exhibited tricalcium phosphate (TCP) solubilization; however, none of them were formed clear halos on solid medium supplemented with aluminum phosphate (Al-P) or iron phosphate (Fe–P). Among 119 isolates, 40% exhibited IAA production. The selected nine potential isolates also exhibited potentials of IAA, HCN, NH3 and/or hydrolytic enzymes production. All the selected isolates were potential solubilizers of the three inorganic phosphates (Al-P, Fe–P and TCP) included in liquid medium. The highest values of solubilized TCP were recorded by isolates AU4 and RG6 (A. soli), 108.96 mg L−1 and 107.48 mg L−1, respectively at sampling day3 and 120.36 mg L−1 and 112.82 mg L−1, respectively at day 6. The highest values of solubilized Al-P and Fe–P were recorded by isolate RG6, 102.14 mg L−1 and 96.07 mg L−1, respectively at sampling days 3 and 6, respectively. The highest IAA, 313.61 µg mL−1 was recorded by isolate DM17 (Bacillus thuringiensis). Inoculation of wheat with AU4, RG6 and RG5 (Acinetobacter soli) increased shoot length by 11, 17.4 and 14.6%, respectively compared to the negative control. Similarly, 76.9, 69.2 and 53.8% increment in shoot dry weight is recorded by inoculation with RG6, AU4 and RG5, respectively. These nine potential endophytic isolates are identified to Gluconobacter cerinus (4), Acinetobacter soli (3), Achromobacter xylosoxidans (1) and Bacillus thuringiensis (1).ConclusionAU4, RG6 and RG5 can be potential bio-inoculants candidates as low cost agricultural inputs in acidic and/or alkaline soils for sustainable crop production.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have