Abstract
BackgroundThe menace of resistance to anti-malarial drugs is a great challenge to malaria control, necessitating the search for new anti-malarial agents. This search has led to the exploration of natural products for efficacy in malaria therapy. Omidun is the supernatant of fermenting maize (ogi) slurry that has been widely investigated and reported to possess several health benefits and it is used traditionally as solvent for preparing anti-malarial herbs. However, there is no information on the anti-malarial activity of omidun itself. This study was conducted to investigate the prophylactic, curative and suppressive anti-malarial potential of omidun.MethodsExperimental mice in the curative group were infected with 1 × 106 cells of Plasmodium berghei strain ANKA and treated with either 0.2 ml of omidun containing 3 × 109 cfu/ml of viable lactic acid bacteria or 0.2 ml of 5 mg/kg of chloroquine (positive control) or 0.2 ml of saline (negative control) for 4 days from day 3 post infection. The prophylactic group of mice were pre-treated with either omidun, chloroquine or saline for 4 days before infection with P. berghei, while the suppressive group was treated with omidun or chloroquine or saline and infected with P. berghei simultaneously. A group of mice were uninfected but treated (with omidun and control samples), while a final group was uninfected and untreated (controls). Parasitaemia and histopathology analysis were done in all groups.ResultsThe curative and suppressive groups showed a significant difference between the omidun-treated mice (100% parasitaemia reduction) and the untreated mice (54.5% parasitaemia increase). There was no significance difference between the omidun treatment and chloroquine (positive control) treatment in suppressive group as both treatment had 100% parasitaemia reduction. The omidun prophylactic treatment however did not show any parasitaemia suppression, but a significant difference was observed between the omidun treatment (85% increase) and the chloroquine (positive control) treatment (100% reduction) in the group. Omidun treatment is non-toxic to the kidney.ConclusionThis study provides scientific evidence supporting omidun usage in the treatment of malaria. Consequently, further work may yield the specific component of omidun responsible for the anti-malarial activity.
Highlights
The menace of resistance to anti-malarial drugs is a great challenge to malaria control, necessitating the search for new anti-malarial agents
Efficacy analysis of Omidun The mean parasitaemia values of the omidun curative study was found to be 3.24% on day 3 post infection; this value dropped to 2.07% (36.1% decrease) after 24 h, 0.18% (94.4% decrease) after 48 h and a final value of 0% (100% decrease) after 72 h
The chloroquine treatment group showed a mean parasitaemia value of 3.20% on day 3 post infection; this value dropped to 1.13% (64.7% decrease) after 24 h and further decreased to 0% (100% decrease) after 48 h
Summary
The menace of resistance to anti-malarial drugs is a great challenge to malaria control, necessitating the search for new anti-malarial agents. This search has led to the exploration of natural products for efficacy in malaria therapy. In Nigeria, the traditional medical source may be herbs, leaves and tree bark of certain plants, soaked in solvents such as water, alcohol, palm wine, and supernatant (omidun) of fermenting maize slurry (ogi). These solvents, of which the most preferred have been found to be omidun and palm wine, are believed to extract the active ingredients in the plant parts [6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have