Abstract

The purpose of the present study was to develop implantable BCNU-loaded poly( d, l-lactide-co-glycolide) (PLGA) wafer for the controlled release of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and to evaluate its in vitro and in vivo antitumor activity. The release rate of BCNU from PLGA wafer increased with the increase of BCNU amount loaded and the release was continued until 7 days. In vitro and in vivo antitumor activity of BCNU-loaded PLGA wafer was investigated using in vitro cytotoxicity against 9L gliosarcoma cells and a subcutaneous (s.c.) solid tumor model of 9L gliosarcoma, respectively. The wafers containing BCNU showed more effective cytotoxicity than BCNU powder due to its short half-life and inhibited the proliferation of 9L gliosarcoma cells. BCNU-loaded PLGA wafer delayed the growth of the tumors significantly and increasing the dose of BCNU in the wafer resulted in a substantial regression of the tumor. These results of antitumor activity of BCNU-loaded PLGA wafer demonstrate the feasibility of the wafers for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.