Abstract

The present study aims to evaluate the impact strength of PMMA incorporated with TiO2 nanoparticles by two different processing techniques i.e. water bath and microwave processing techniques. A total of 80 samples made of PMMA were divided into four groups. Each group includes 20 samples with group I and II comprising of samples made of normal acrylic resin and acrylic resin reinforced with 1 wt% TiO2 nanoparticles processed with conventional water bath technique respectively, groups III and IV include normal acrylic resin and acrylic resin reinforced with 1 wt% TiO2 processed using microwave technique respectively. The specimens were tested for impact strength using IZOD pendulum impact tester. The impact energy values obtained were analyzed statistically. The results through one-way ANOVA showed a high mean impact strength with group IV samples (23.13) and lowest with respect to group I (19.42) with highest statistical significance (p < 0.001). A post hoc Tukey test intergroup analysis showed a statistically significant difference between group I and other groups, whereas there was no statistical significance associated with other intergroup comparisons. PMMA with its current drawbacks in the physical and mechanical properties requires modifications to make it an ideal denture base material. The current investigation evaluates that a high mean impact strength with samples made of PMMA incorporated with TiO2 nanoparticles processed by microwave technique was obtained when compared with normal acrylic resins processed by water bath technique. The methodology of current study can be used while processing of denture bases for patients to evaluate the effect of oral environment on inclusion of TiO2 nanoparticles with microwave processing in a clinical setup. This could help in reducing the amount of fractures associated with heavy load masticatory stresses and improving the mechanical properties in denture bases. How to cite this article: Kumar CA, Kumar CR, Vamshikiran K, et al. Evaluation of Impact Strength of Dental Acrylic Resins by Incorporation of TiO2 Nanoparticles Using Two Different Processing Techniques. J Contemp Dent Pract 2019;20(10):1184-1189.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call