Abstract

In order to rapidly determine the hydraulic conductivity for both marine and deltaic deposits in field, an approach is proposed to evaluate the hydraulic conductivity of soil using cone penetration tests with pore water pressure measurement, known as piezocone testing. This approach is based on the test results from a series of laboratory penetration tests investigating the expansion shape of soil using a model cone tip with different tip angles and considering the influence of the soil characteristics. To derive the calculation method, two assumptions are made: i) the flow surface of pore water is assumed to be a half ellipsoid shape, covering the whole tip of the cone, and ii) the initial state of induced excess pore pressure is assumed to be have a negative exponential distribution and to dissipate from the half ellipsoid surface. The proposed approach is compared with the existing approach based on piezocone data and laboratory testing. All of the three methods were applied to analyze three field cases, in which two cases is marine deposit and one is deltaic deposit. The results show that the proposed approach can predict hydraulic conductivity of both marine and on-land deposit, which extends the range of the application of the existing approaches as proposed by Chai et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.