Abstract
In order to investigate the therapeutic interaction of an extra-cellular photosensitization reaction, we evaluated the oxidation characteristics of human and bovine serum albumin by this reaction with talaporfin sodium under complete binding with albumin by spectroscopic analysis in a cell-free solution. The solution was composed of 20μg/ml talaporfin sodium and 2.1mg/ml human or bovine serum albumin. A 662nm laser light was used to irradiate the solution. Visible absorbance spectra of solutions were measured to obtain the oxidized and non-oxidized relative densities of albumin and talaporfin sodium before and after the photosensitization reaction. The defined oxidation path ratio of talaporfin sodium to albumin reflected the oxidation of the solution. Absorbance wavelengths at approximately 240 and 660nm were used to calculate normalized molecular densities of oxidized albumin and talaporfin sodium, respectively. The oxidation path ratio of talaporfin sodium to albumin when binding human serum albumin was approximately 1.8 times larger than that of bovine serum albumin during the photosensitization reaction from 1 to 50J/cm(2). We hypothesized that the oxidation path ratio results might have been caused by talaporfin sodium binding affinity or binding location difference between the two albumins, because the fluorescence lifetimes of talaporfin sodium bound to human and bovine serum albumin were 7.0 and 4.9ns, respectively. Therefore, the photodynamic therapeutic interaction might be stronger with human serum albumin than with bovine serum albumin in the case of extracellular photosensitization reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.