Abstract

In order to understand extracellular-photosensitization reaction (PR) using talaporfin sodium, we studied comparison of oxidation dynamics of albumin and talaporfin sodium in solution system by visible and ultraviolet absorption spectrum measurements. Almost all talaporfin sodium particles may be bound to albumin in interstitial fluid, and this binding would affect the oxidation dynamics during this PR. Bovine serum albumin (BSA) is commonly used <i>in vitro</i> study but its binding characteristics with talaporfin sodium are different from human serum albumin (HSA). PR was operated in a solution composed of 20 &mu;g/ml talaporfin sodium and 1.3 mg/ml HSA or BSA to simulate myocardial extracellular PR condition. Laser radiation of 662 nm was irradiated to this solution with irradiance of 0.29 W/cm<sup>2</sup>. Absorption spectra of these solutions were measured during the PR. We estimated oxidized ratio by absorption difference around 240 nm before and after the PR. Talaporfin sodium was oxidized 100% with HSA and BSA by the PR of 100 J/cm<sup>2</sup> in radiant exposure. On the other hand, HSA and BSA were oxidized 60% and 94%, respectively in this radiant exposure. Q-band absorption peak of talaporfin sodium with HSA was shifted to 1 nm longer wavelength increasing radiant exposure up to 100 J/cm<sup>2</sup>. This longer wavelength shift would mean binding ratio of non-oxidized talaporfin sodium to non-oxidized HSA was increased with increasing radiant exposure. Therefore it would be possible that PR with talaporfin sodium bound to HSA might present efficient PDT than PR bound to BSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.