Abstract

WBC depletion by filtration may prevent the transmission of HTLV-I, which requires cell-to-cell contact. The removal of HTLV-I-infected cells in routinely filtered blood cell components was measured. The study was conducted in Martinique where systematic screening for HTLV-I and -II and universal leukoreduction are mandatory. HTLV-I was quantified by use of real-time PCR in 8 RBC units and 4 PLT concentrates before and after filtration. HTLV-I proviral load in PBMNCs was determined in five of the eight HTLV-I-infected blood donors. The amount of MNC-associated HTLV-I DNA in RBC units before filtration was 21 x 10(6)+/- 29 x 10(6) copies (mean +/- SD). HTLV-I was detected in 4 of 8 RBC units after filtration, with a number of copies in the MNC fraction ranging from 20 to 140, following a 4.9 to 5.8 log reduction. Flow cytometry analysis performed in 2 of the filtered RBC units containing detectable HTLV-I showed suboptimal and out-of-range leukoreduction (0.56 x 10(6) and 1.22 x 10(6) residual WBCs). HTLV was not detected in filtered RBCs from the blood donor with the highest percentage of HTLV-I-infected PBMCs (9%). This study confirms that HTLV-I-infected cells can be detected in filtered blood cell components and shows that optimal leukoreduction is critical for HTLV-I removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.