Abstract

BRAF V600E is the predominantly occurring mutation of the cytoplasmic kinase BRAF, and, in colorectal cancer, its determination provides a diagnostic exclusion criterion for hereditary nonpolyposis colorectal cancer. The aim of our study was to develop a sensitive BRAF V600E high resolution melting (HRM) assay. We first established and optimized the BRAF HRM assay using a cell line dilution model, enabling us to detect 1% mutant DNA in a background of wild-type DNA. In a comparison, DNA sequencing and real-time allele-specific PCR in the cell line dilution model HRM assay proved to be more sensitive than DNA sequencing and denaturing high performance liquid chromatography, retaining the same sensitivity as real-time allele-specific PCR. In a learning set of 13 patients with known BRAF V600 status, the mutation was detected with high concordance by all four methods. Finally, we validated the HRM assay on 60 formalin-fixed, paraffin-embedded colorectal cancer samples. Although all mutated samples were correctly identified by HRM, the detection limit of the HRM assay decreased when using low-quality DNA derived from formalin-fixed, paraffin-embedded samples. In conclusion, HRM analysis is a powerful diagnostic tool for detection of BRAF V600E mutation with a high sensitivity and high-throughput capability. Despite the expected decrease in sensitivity, HRM can reliably be applied in archival formalin-fixed, paraffin-embedded samples tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.