Abstract

Precise characterisation of surface topography is of the greatest importance since many factors directly affect the accuracy of the whole measurement process. In this paper, the variety of surface topographies from machined composite and ceramic workpieces was studied with a special emphasis on the measurement results. Surfaces were subjected to the ground diamond, honing and milling processes. Measurement results were analysed in terms of the application of the procedure for the removal of the high-frequency noise. Bandwidth characteristics were supported by the studies of autocorrelation and power spectral functions. It was found, that examination of noisy data, especially its isotropic properties, is crucial in the enhancement of the noise-removal methods. The proposed procedure was validated through direction and profile characterisation. The spline filtering technique with a 7.5 μm cut-off was encouraged against other generally used filtering techniques for the reduction of high-frequency measurement noise considering the study based on the power spectral, autocorrelation and direction functions. The proposed methodology was validated by comparing it to the averaged results of 3 time repeated measurements of the composite and ceramic surfaces after machining. The main advantage of the proposal is reducing the time of data processing due to the fast and easy-to-implement usage of general surface topography analysis functions, available in the commercial software of the measuring instrument.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.